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Bateman's Constants Reconsidered and the 
Distribution of Cubic Residues 

By Daniel Shanks and Mohan Lal 

Abstract. We analyze the computation of certain slowly convergent infinite products in- 
volving cubic characters. A first-order analysis gives a 2D or 3D answer immediately, but 
extensive computation of cubic residues only improves this to 5D or 6D. To do better, one 
must examine the distribution of cubic residues or evaluate certain Dedekind Zeta functions. 
Both are done. The constants thus obtained are used to examine a variant of the Hardy- 
Littlewood Conjecture K concerning primes of the form ns + a. Some related mathematics 
needed and developed includes an answer to this: Which p, satisfying x' - a (mod p), have 
two solutions x that differ by k (mod p)? 

1. Introduction. Let 

(1) A = P a(p), 

where the product is taken over all primes p = 6m + 1 (we write pi = 7, p, = 13, 

p3 = 19, *.*), and where a(p) is 3, or 0, according as 

(2) p = u + 27v, 

or not; that is, according as 2 is a cubic residue of p, or not. More generally, let 

(3) kG =II fW 
ta P- 1 

taken over all pi not dividing a, and a,(p) is 3, or 0, according as a is, or is not, a 
cubic residue of p. Thus, A = k2, and Bateman and Horn [1], [2] also examined 
B = k3, with a3(P) = 3 if, and only if, 

(4) p= (u2 + 243v2). 

If a is not a perfect cube, and if K.(N) is the number of primes of the form 

(5) n3 + a 

for 1 : n < N, then Conjecture K of Hardy and Littlewood [3] asserts that 
N d 

(6) K0(N) 1k. l odx 

(To eliminate ambiguity, if a <0, and if, for some n, n3 + a is the negative of a prime, 
we will count it as a prime.) 

Received July 19, 1971. 
AMS 1970 subject classifications. Primary 1OA20, 10H15, 1OH25, 1OH35, 12A30. 
Key words and phrases. Distribution of cubic residues, distribution of primes, number-theoretic 

products, Bateman-Horn conjecture, Dedekind Zeta functions. 

Copyright ? 1972, American Mathematical Society 

265 



266 DANIEL SHANKS AND MOHAN LAL 

But these constants kG offer difficulties in their accurate computation. The 
product (3) converges, but it does not converge absolutely, and a useful bound on 
the error for any partial product is not available, since there is insufficient knowledge 
concerning the distribution of the subsequent values of aa(p). Bateman and Horn 
therefore gave only "tentative" values. They evaluated (3) for p < 10i using Jacobi's 
table of indices to decide the question: 

a2,1(p) = 3, 0. 

They got 

(7) A = 1.29, B = 1.38. 

In a long review [4], one of us discussed this difficulty, and gave an exotic, and 
interesting, but not very practical method of computing A. The galleys for this 
review were shown to Andrej Schinzel, and even before it appeared in print, he and 
Davenport obtained [5] what we shall call a first-order solution, not only for (5), 
but for all irreducible polynomials, and systems thereof. This was accomplished by 
using the known behaviour of the corresponding Dedekind Zeta functions UK(s) 
ass 1+. 

Specifically, for (1), they give 

(8) A 1og(213 - 1)1 H p ) 2 - 1 3 

with fl1 taken over all p with a2(p) = 3, fls taken over all p with a2(p) = 0, and 
H2 taken over all primes q = 6m + 5. For B there is a similar formula with 
jlog(2"8 - 1)1 replaced by i Ilog(93 - 2)1, and a2(p) replaced by a3(p). The three 
products shown converge absolutely, but very slowly. Davenport and Schinzel 
confirmed (7). 

Our point of departure is this Davenport-Schinzel formula for k., but we make 
several changes. We factor the three products IIH 12 H8 in two different ways: 

(9) Lo I| = 1 1 = U0 II 
4,a 1 2 3 5, a 

Here the constants L4 and U0 depend only on the quadratic character (-3/p), are 
"universal" in the sense that they are independent of a, and can be computed very 
accurately once and for all. In fact, we have 

(10) Lo = 0.920038563618492, 

U0 = 1.064378253083636. 

The difficult part of the computation, and that dependent on a, is confined to the 
slowly convergent products, taken over the primes p = 6m + 1: 

(11) 4,a vamps (modp) ( (4 - 1)2) 

5, a'amI (mod p) p(p 1)2) 

We note that TJ4,a converges monotonically increasing, and jlj,. monotonically 
decreasing, and we therefore have rigorous, (and best possible) lower and upper 
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bounds. Further, by replacing the individual criteria (2) and (4) with an Euler 
Criterion 

(12) a2^ = a(p-1)/3 1 (modp) 

we not merely obtain instant generalization (which we use in [6]), but we also save 
time since (12) is quicker to compute. With residue arithmetic, it can be determined 
in O(log m) operations, while the simplest programs, for (2), (4), and analogues for 
other a, require O(V\p) operations. 

With no knowledge of a?2(p), and no computation of ( 1), one has 

r Ilog(2'/3 - 1)1 Lo < A < g(21/3 - 1)1 U0 

or 

1.129 < A < 1.307. 

Similarly, 

1.205 < B < 1.395. 

If one evaluates (11) through ps = 373, one has 

(13) 1.29805 < A < 1.29878, 

1.39001 < B < 1.39080. 

Both tentative values (7) are therefore a little low, and, in fact, are low in comparison 
with Horn's count of the primes [2]. 

To do better than (13) by the use of (11) one must use a computer since the 
products (11) converge so slowly. Using a small machine, an IBM 1620, we evaluated 
(11) for p < ploooO = 225217, and obtained 

(14) 1.298539124 < A < 1.298539774, 

1.390543474 < B < 1.390544171. 

Number-theoretically speaking, (14) perhaps suffices, but analytically speaking we 
are not satisfied. If p < P is used in (11), and if the products 

(14a) Lo II (P), U0 II (P) 
4,a 5,a 

agree to d decimals, then to obtain d + 1 decimals one must go nearly to p 5 lOP, 
that is, one must perform ten times as much arithmetic. This is clearly unsatisfactory, 
and sets the stage for two extensive mathematical investigations. 

(a) In Section 4 we examine a weighted mean of the foregoing upper and lower 
bounds that gives us approximately id decimals. While it is entirely convincing, it 
now has no rigorous theory and none can be anticipated soon since, in its stronger 
form at least, it probably requires the Riemann Hypothesis for the appropriate 
Dedekind Zeta functions. Arithmetically speaking, though, this mean is very simple, 
and gives us our own "tentative" values: 

(15) 
A = 1.29853956, 

B = 1.39054394. 
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These values are "tentative" (at this point) for essentially the same reason that 
those in (7) were. One needs detailed and deep knowledge of the fluctuations in the 
distribution of cubic residues, and the effect of such fluctuations upon the induced 
oscillations of the sequences (3) or (11). To gain such insight as was possible to us, 
we proceeded as follows. With our improved values (14) we know with some accuracy 
the limits of the sequences (3). Thereby, it becomes possible to study quantitatively 
the oscillations of these sequences around their known limits, and the correlation 
of these oscillations with the aforementioned fluctuations in the cubic residue 
distributions. 

The three deep and associated problems: the convergence of (3), the distribution 
of the cubic residues, and the zeros of Ur(S) are surely of greater interest than the 
special problem that gives rise to their examination here, namely, the justification 
of the more accurate values (15), but, of necessity, we cannot carry them very far. 

(b) While (a) is thus of interest, the real answer to the search for a better analytic 
method than that which gives (14) is of quite a different character. In Section 6 we 
show that if we could evaluate tK(2) we could improve the first-order method (14a) 
to a second-order one. Likewise, tK(3) would allow a third-order method, etc. (The 
values (7) were computed with a zero-order method.) The numbers (10) were not 
hard to compute since they were based upon the known values of 

(16) L3(s) = E (2n + )(2n + 1), 

for s = 1, 2, 3, * , and, similarly, Ur(S) for s = 2, 3, are what are needed to 
compute (3) effectively. 

In [12], one of us develops a method of computing these tK(S). With these, and a 
thorough recasting of the entire problem, we obtain a completely satisfactory solution 
for this problem of computing ka. We refer the reader to [12] and merely indicate 
here that it is (now) fairly easy to compute 

(15a) A = 1.298539557557843, 
B = 1.390543938783812. 

These show that the tentative values (15) were correct. 
Returning to the present paper, we examine the "twin" primes 

(n - 1)3 + a, (n + 1)3 + a. 

Let T7(N) be the number of such pairs for 1 ? n + 1 ? N. The Bateman-Horn con- 
jecture [1] gives 

(17) T.(N) 4te, fN g2 x 

for some t.. We compute t. from k., together with other universal constants, and 
other upper and lower bound products similar to (10) and (11). But we also need to 
answer the following question: For which p having a as cubic residue do two cube- 
roots (mod p) differ by 2? We give a complete answer with this difference 2 replaced 
by an arbitrary difference A. 

Finally, using Horn's lists of primes n3 i 2, n3 i 3, and our computed 
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(18) t2 - 0.25978891, 

t (3 = 0.29427951, 

we examine the empirics of (17). 

2. The Universal Constants. For any a not equal to a cube the generalization 
of (8) may be written 

(19) k, = Ic 17 11 2 
_ - ][I _3 

with II, taken over those p = 6m + 1 satisfying a2" 1 (mod p), Ha over those p 
satisfying a2m 0 1 (mod p), and 112 over all q = 6m + 5. Here e0 is the fundamental 
unit, H. is the class number of the cubic field, and r. is a rational number dependent 
on a. We note that this is a little different from Davenport-Schinzel. For certain a 
they have a finite number of factors deleted from 112 and/or 113, or, again, 
22/(22 - 1) may be included in 12, but we prefer to standardize as shown, absorbing 
any of these special factors into our rational factor r.. We also note that for the two a 
treated here, (the generalization is in [6]), we have 

(20) r2= 1, r3 =2, H2= H3 1, 

and 

(21) e2 = 41/8 + 2 1/ + 1, ea = 2.91/3 + 331/8 + 4, 

consistent with the previous formulas. 
We now reduce the two products involving the cubic character to one. We write 

I, -,T.p2(p -3)/P( 3) (22) .L =J(P l3/, mo (P ~) (22) r~~I all 
D 

0001# (mod P) 

and combining the numerator with 112, and the denominator with 118 we have 

(23) ][I (11_1L 11 1 2 3 aIM#1 (modp) P(P 1) 

with 

TTp2(p-3)1q 2 
(24) Lo = H (P 1) -21 

Also, we write 
3/ 3 

(25) 1 1 11/ 1 P3 P 
3 &H l a"'-1 (modv) 1 

and combining the numerator with 112, and the denominator with 1 we have 

(26) U0 II ( - +i 
1 2 3 a,""-1 (modv) AP 

with 
3 2 

(27) Uo- j19 q2 
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We refer to the partial products of (23) and (26) as 

L(a, i) = Lo a l 1 - '(P i 1)2) 
(28) a21101 (modP ;P$5Pi 1 PW l 

U(a, i) = UO I I ( p- 1 
a2 01-1 (mod >) ;,Pp;S P(P-5 

so that 

(29) L(a, i) < IIII< U(a, i) 
1 2 3 

for any a and all i, and 

(30) II TII (a, co) U(a, c>) 
1 2 3 

for all a. For example, in evaluating (13) with the p through p. = 373, we computed 

L(2, 35) = 1.057427, U(2, 35) = 1.058020, 

L(3, 35) = 1.060874, U(3, 35) = 1.061470. 

The computation of U0 is quite simple, being similar to that of the Landau 
constants be discussed in [7, p. 553]. With L3(s) as in (16) and 

(31) r3(S) = (1- 
I 

I 

one has 

(32) 2q _ .( 

2 
q. 

1/2 

By iteration of (32) one obtains the very rapidly convergent 

q' __/M(2~_~4)\ M38)\" 
(33) 2I1 11 1 

( 1 - \ L3(2) /L3(4) 4(L8), 

Similarly, 

(34) S (Ls(s)82(s)j/( 8 I) p-l 3(2s) I 

and 

(35) H p _ I =3(LO(3)M3(3) 12 (L3(6)?3(6)V1/4 

From tables of L3(s) and p3(S) = L_9(s), [8], we easily obtain the U0 of (10). 
The constant L4 is more difficult. The Hardy-Littlewood C3, for prime triples [3], 

is given by 

(36) w2(W- 3) 
(36) ~~~~~~C3 = W ) - 

taken over all prime w > 3. Although it is not necessary to do so, we find it con- 
venient to utilize this number, writing (24) as 
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(37) Lo = C3 (q 2 
- 

_ t_ 3) = 3 ( (q - 1) 
. (q 1)(q a (q + 1)(q - 3) 

To compute the slowly convergent product on the right, and at least one other 
universal constant needed later, we further generalize the Lemma of [9] as follows: 

LEMMA. If 

(38) 1 1(+x b)' 

for even n (> 1), and if 

(39) II '_( __ 

for odd n (> 1), then 

(40) bn(s) = (d)n 

the sum taken over all odd divisors d of s with Mi(d) the Mdbius function, except for n 
odd and s = 2' (r = 0, 1, *), in which case 

(41) bn(S) = I (n8-1) 

Conversely, the right sides of (38), (39) converge to the left sides if jnxj < 1. 
The proof is, as before, accomplished by taking logarithms of both sides, com- 

paring coefficients, and then utilizing the Mobius Inversion Formula. The needed 
extension here over the previous version is because (38) is not possible for odd n if 
the ba(s) are to remain integers. 

As a pertinent example we have 
(1 - x) (1 -x) (1 +X2 2(1+ X3 4( +X4% 1O 

(42) (I - 3x) (I + x) (I - x \1 x)\1 X4/ 

with the exponents 

b3(2) = 2, b3(3) - 4, b3(4)= 10, b3(5) = 24, 

b3(6) = 60, b3(7) = 156, b3(8)= 410, b3(9) = 1092, *.. 

(We note, for future applications, that negative n may also be used in (38) and 
(39) simply by setting x negative. For example, so doing with n = -2 gives 

Pz p(- 3) r Ps + i a (s) 

(p (+ 2)(p - 5) s-2\ -1 

with a(2) = 5, a(3) = 15, a(4) = 70, a(5) = 285, .) 
From (42) and (37) we therefore have, by setting x = 1/q, 

(43) Lo = C3 fcollq: 

+ 
b8(a). 

B r2 ( , 2 w hav 

But, from (32) we have 
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(44) I() + 1 
-MS) 

As usual, we get faster convergence by computing several factors in (37) directly, 
and then compensating in (43). Choosing, say, the first k q's for such special treatment, 
(43) and (44) give 

(45) Lo = C3 (qj - )2 _ (T3 (s))b() 
i-i (qj + 1)(qj -- 3) is-2 

with 

(S 
3 (S) 

-I 1 
T3 ( )L3(s) a, q. + 1 

With his kind permission, we used unpublished results of J. W. Wrench, Jr. for 
C3 and T35'(s) in (45) to obtain the L. of (10). 

We digress briefly to indicate that Lo is, in a way, not a "new" number. The 
Bateman-Stemmler constant C appropriate for the number of primes p such that 
p2 + p + 1 is also prime, [10], [11], [2], may be shown by its formula to satisfy 

(46) C = o= 1.521731535075706. 

Previously, C was thought to be applicable to that one problem concerning p and 
p2 + p + 1, and it was computed only to a few places. Here, we see from (19) and 
(23), that it enters as a factor for all n3 + a. 

3. Cubic Residues and the Bounding Sequences. For each of the first 10,000 
primes of the form 6m + 1, pi = 7 to Pioooo = 225217, we have determined by the 
use of Euler's Criterion (12) whether a is a cubic residue of pi, where a is any positive 
integer < 20. The resulting information was punched on IBM cards. These may then 
be used to easily compute the lower and upper bound sequences defined in (28). 
They were also used to compute the sequences (3) defined above and the sequences 
(79) defined below, to examine empirically the questions of distribution alluded to 
above, and to print out tables of cubic residues [13]. 

For a = 2 and 3 we list in Table 1 the bounding sequences L(a, i) and U(a, i) 
of (28) for select values of i. 

TABLE 1 

i L(2, i) U(2, i) L(3, i) U(3, i) 

0 0.92003 85636 1.06437 82531 0.92003 85636 1.06437 82531 
1 1.01688 47282 1.06437 82531 1.01688 47282 1.06437 82531 
3 1.05046 14822 1.06437 82531 1.05046 14822 1.06437 82531 

10 1.05574 07265 1.05886 99857 1.05897 11102 1.06210 99444 
30 1.05729 67073 1.05802 02971 1.06076 74209 1.06149 33860 

100 1.05772 30757 1.05787 40421 1.06117 63182 1.06132 77776 
300 1.05779 66974 1.05783 40491 1.06125 27987 1.06129 02724 

1000 1.05781 59782 1.05782 43888 1.06127 27480 1.06128 11862 
3000 1.05782 00846 1.05782 23030 1.06127 68315 1.06127 90571 

10000 1.05782 12119 1.05782 17420 1.06127 79658 1.06127 84977 
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These sequences converge monotonically and very slowly to limits that were 
subsequently determined to be 

(47) L(2, o0) = 1.057821565488936 = U(2, co), 

L(3, co) = 1.061278320384041 = U(3, oo). 

We note that increase in the index i by a factor of 10 only gives us about one more 
decimal agreement between the bounds L(a, i) and U(a, i). With the values listed 
above for i = 10,000, and the coefficients 

3V3 1.227560110251339, 
(48) irH2 log E2 

3V3 r3 = 1.310253787414239, 
7rH3 log e3 

given by (19)-(21), we obtain our first-order values (14). 
It is clear that this Davenport-Schinzel first-order method, together with the 

improvements made here, leads rather easily to 2D or 3D values such as (13), and, 
with considerable computation, yields 5D or 6D values such as (14), but if one wishes 
a better analysis of the numbers kG the method is not really satisfactory. It is also 
clear that the location of the limits L(a, co) = U(a, co) between the universal bounds 
L4 and U0 depends mostly on whether or not a is a cubic residue for the small primes 
7, 13, 19, 31, * . . Since the smallest prime having 2 as a residue is p, = 31, while 
that for 3 is p7=61, we expect, and find, that both limits lean toward U0, and that 
for 3 is the larger. 

Defining the Ratio, R(i), by 

(49) (;\ =U(a, i) _Uov i 3(p + 1A...i. 3(p + 1)'\ .(49) R (i) = (( ' !)=L?- Al p(p _ 1)2) = (-p(p _ 1)2) 

we note that it is independent of a. It thus provides an excellent check on the arithmetic, 
and specifically on whether a large value of i leads to excessive round-off error. Further, 
its deviation from 1 shows at once the extent to which the upper and lower bounds 
agree. We have 

(50) R(10,000) = 1.0000005012, 

in line with the previously noted accuracy. In the Appendix we derive the approximate 
-equation: 

3/2 
(51) R(i) I + +1(log P,+i + 1) 

Since plooo, = 225223, this gives the reasonably accurate value R(10,000) r 
1.0000004998. Equation (51) supports our previous observation that to obtain even 
one more correct decimal we must increase i nearly by a factor of 10. 

4. The Weighted Mean and the Distribution of Residues. We seek to circum- 
vent the slow convergence of (28) by introducing a weighted geometric mean: 
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(52) G(a, i) = [L(a, i). U2(a, i)]', 

as an estimate of the sought limit 

(53) G(a, i) L(a, co) U(a, co). 

For i large, say, for our present i = iOW, G(a, i) is nearly equal to a weighted arithmetic 
mean: 

(54) A(a, i) = [L(a, i) + 2U(a, i)], 

and since the difference A(a, i) - G(a, i) is of a lower order than the error in (53), 
A(a, i) can be used instead. 

The motivation for (52) is simple. Suppose the index i is increased by a Ai which 
is large, but small in relation to i. Then 

L(a, i + Ai) = L(a, i) ( (p 1) 

U(a, i + A ) = U(a, i) GI 1 )2) 
some p AP 

The individual factors in the products on the right are nearly equal, since Ai is small 
in relation to i. On the other hand, since Ai is large, we expect (nearly) IAi factors 
in the upper product, and J Ai factors in the lower. It follows that we have an 
approximation 

(56) L(a, i + Ai) U2(a, i + Ai) ; L(a, i) U2(a, i), 

the error of which is presently unknown. To the extent that (56) is accurate, however, 
we extrapolate: 

(57) (L(a, i)U2(a, ))/3 (L(a, c)U2(a, 0))l/3 = L(a, co) = U(a, co). 

Similarly, by the foregoing, we may approximate 

(58) A(a, i) L(a, co) = U(a, co). 

But how accurate is this approximation? 
In Table 2 we show the behaviour of G(3, i) for i = 6200(200)10000. (Actually, we 

computed the simpler A(3, i) here, but they agree to 12 decimals for these i.) 

TABLE 2 

i G(3, i) i G(3, i) 

6200 1.06127832170 8200 1.06127831971 
6400 1.06127832148 8400 1.06127831939 
6600 1.06127832092 8600 1.0612783198& 
6800 1.06127831985 8800 1.06127832062 
7000 1.06127832080 9000 1.06127832076 
7200 1.06127831914 9200 1.06127832081 
7400 1.06127831922 9400 1.06127832063 
7600 1.06127831957 9600 1.06127832004 
7800 1.06127831947 9800 1.06127832028 
8000 1.06127831965 10000 1.0612783203& 
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Now, we note that while L(3, i) and U(3, i) are converging monotonically towards 
each other 

U(3, 6200) = 1.06127863370 l U(3, 10000) = 1.06127849768, 

L(3, 6200) = 1.06127769769 T L(3, 10000) = 1.06127796580, 

but agree to only five (and a fraction) digits, the mean oscillates randomly around a 
value of 1.06127832. But to the extent that G(3, i) remains unchanged, we may say 
-that the approximation (53) is valid. And since the changes in G(3, i) here are in the 
ninth digit, we heuristically expect that 

L(3, c ) = U(3, oo) = 1.06127832 

is correct-or, at worst, nearly correct-to eight decimals. (In fact, by (47) it is 
correct.) 

As we have indicated, we do not believe any presently obtainable bound on the 
error in (57) will be sufficiently useful; it would surely be grossly too large. On the 
other hand, a useful bound will not be rigorous. Nonetheless, we continue this 
heuristic and empirical treatment in the next section for any insight that it may give 
into the convergence of (3), and the closely related distribution of cubic residues. 
We return to an exact treatment in the rest of the paper. 

5. Observations and their Heuristic Implications. It is clear that G(a, i) con- 
verges to L(a, co). The question is: How large are its oscillations around this limit? 
These oscillations are a damped-down reflection of the much larger oscillations in 
(3). If, locally, there are many p satisfying (12), the sequences will fall; if there are 
few such p, the sequences will rise. We wish to gain insight into the (delicate) 
oscillations in the G(a, i) by examining the grosser behaviour in the partial products 
of (3). 

For a = 2 and 3, Bateman and Horn computed (3) for p < 1000. We have exam- 
ined all a ? 20 and computed these products for 

(59) p < P = n 1000 (n = 1, 2, 3, , 100). 

By comparing these with the reasonably accurate limits (14), and their analogues 
for a > 3, we may state, first, the unexpected 

Observation L.,The convergence of (3) is mostly from below. In all cases up to 
a = 20, the partial products of (3) exceed k. for certain limits P, but usually the partial 
product is smaller. For example, of the 100 values (59), 84 partial products <kL 
for a = 2, 79 for a = 3, 92 for a = 5, etc. While these "fractions" vary greatly with 
both a and P, the overall phenomena is unmistakable. That both estimates (7) would 
be low was the most probable case. 

This Observation 1 has the following implication: Usually, that is, for most 
ranges of primes 

(60) p < p < p + AP, 

with AP large but small compared to P, we expect somewhat less than i of these p 
to have a as a cubic residue, and somewhat more than I to have a as a cubic 
nonresidue. 

For, suppose there are 3k primes p in (60), and that they split as k residues and 
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2k nonresidues uniformly distributed. The corresponding factors in (3) will yield 
a product 

(61) -(i I)p -)p <) [ 
. 

But this shows that in such circumstances, (3) would converge from above, not mostly 
from below. Since this contradicts Observation 1 we must conclude that usually 
there will be <k residues and >2k nonresidues. 

In our tables [13], mentioned at the beginning of Section 3, we include data for 
a ? 20 on the distribution of residues and nonresidues. These counts were both 
for the primes pi with 

i < I=n 100 (n = 1, 2, 3, **, 100), 

and for those with 

Pi < P = - 1000 (n = 1, 2, 3, *** 100). 

While these counts are cwnulative, and not local as in (60), these results are consistent 
with the foregoing. We have 

Observation 2. For a < 20, and for most limits I and P above, the fraction of 
residues is less than J. Again, while these fractions vary greatly with a and I (or P), 
the overall phenomena is unmistakable. On the average, for about 85% of the 
examined limits I (or P), the number of nonresidues exceeds twice the number of 
residues.* 

Let a be fixed, say a = 3, and consider 

(62) S(P) = D\P 
4' 

where N(P) is the number of pi < P for which a is a cubic nonresidue, R(P) is the 
corresponding number of residues, and 

(63) D = N(P) - 2R(P), 

I = N(P) + R(P). 

From Observation 2 we know that S(P) is usually positive. Explicitly, for a = 3, 
and the P = I000n, (n = 1, 2, * * *, 100) mentioned above, one finds a local maximum 
at n = 7-10: 

S(7000) = 1.56, S(8000) = 1.22, 

S(9000) = 1.29, S(10000) 1.56, 
a local minimum at n = 29-32: 

S(29000) = -0.44, S(30000) =-0.84, 

S(31000) = -0.45, S(32000) = -0.42, 

and an average S over the 100 values of n: 

* Of course, as I (or P) a, the limiting fraction of residues is exactly i. That is a special case 
of Landau's Prime Ideal Theorem. 
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3= 0.79. 

For a = 2, one similarly finds 

S(100000) = 1.77, S(45000) =-0.27, 3= 0.69, 

and though we do not wish to give more elaborate statistics here we will merely 
state that for other a, and other ranges of P, the behaviour is similar. 

Now there are two points that should be made about this ratio S(P). First, con- 
sider the corresponding partial products of (3): 

(64) k.(P) = II p -?a(p). 
v~ a P 1- 

We cannot expect an exact correlation between S(P) and ka(P) since the former 
merely reflects the total counts N(P) and R(P), while the latter depends on the details 
of this distribution. But we do expect a rough correlation and a rough coincidence 
of their extrema. In fact, for a = 3, we find high values at 

k3(7000) = 1.39179, k3(8000) = 1.39065, 

k3(9000) = 1.39110, k3(10000) = 1.39229, 

low values at 

k3(29000) = 1.38799, k3(30000) = 1.38729, 

k3(31000) = 1.38793, k3(32000) = 1.38797, 

and, with less precision, that k3(P) is closest to k3 when 

0.7 < S < 1.3. 

Secondly, this behaviour of S(P) is that which is intuitively expected from analogy 
with quadratic residues. If we write [14] 

(65) r(P) = E (p) 
for a fixed a d k2 with (alp) the Legendre symbol, we know that T(P) is usually 
positive and has a mean value close to 1. If we replace 7r(P) by 2I, and (alp) by the 
cubic character X: 

x 1 for cubic residues, 

x = (-1 i \/3 i)/2 for cubic nonresidues, 

then S(P) is the real part of the resulting ratio. 
This described behaviour of 'r(P) is associated with the complex zeros of the 

corresponding Dirichlet L functions, and will persist as P - c if and only if none 
of these zeros have a real part > 1. One expects that S(P) depends similarly on the 
corresponding Dedekind Zeta function of the cubic field Q(a1'3). 

If our observations concerning S(P) would persist as P -4 c we would expect 

(66) ka(P) = ka + O(P" 1)2 

We referred to the Bateman-Horn estimate as a "zero-order" method, and, in fact, 
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that is all that can be proven. But, probably it really is a "half-order" method in 
agreement with (66). At P = 10O, and therefore i = 4784, one has 

R(4784) = 1.0000012 

from (49). The upper and lower bounds in the first-order method therefore differ 
in the sixth decimal here. But k3(P) is oscillating in the third decimal at P ;t 106. 

Applying the same assumption on the distribution of residues and nonresidues to 
(55) instead of (3), would therefore lead us to expect, for p, = P, 

(67) G(a, i) = G(a, co) + o(P-3/2). 

We did see that G(a, i) was oscillating in the ninth decimal at comparable P. Ap- 
parently, then, (52) is a 12-order method. 

Clearly, all of this section is merely heuristic. We have not proven that (52) has 
the accuracy suggested above. Nonetheless, the intuitive picture presented may be 
of interest. 

In (15) we gave a quite conservative estimate; we made no serious attempt to 
squeeze out one extra decimal by careful correlation of G(a, i) with S(P) as suggested 
above. The real method for computing a more accurate ka is in [12], as we mentioned, 
but these studies in the distribution of cubic residues nonetheless induced us to 
compute some quite elaborate tables [13]. These may find other use. 

6. Utilizing ,K(S) for s = 2, 3, ..., if Available. From (19), (20), (23) and (46) 
we may write 

(68) A =k2=I /P) 
In I2 4m$0 (modp) (1 - 3/p)(1 - I/p3) 

Now just as [5] introduced Lim.,l+,(s)/1K(s) into the slowly convergent product (3), 
we may similarly remove the most slowly convergent "factor" from the product (68). 

Consider c(s) and the L3(s) and r3(S) of (16) and (31). Each has an Euler product 
as does also the Dedekind Zeta function tr(S) for K Q(21/3). If we combine the 
four products we find 

= (s)3(s)L3 (S) _1-l/p3& 
(69) f(s) - 11 

taken over the same primes. Let us write x = i/p and note the factor in (68) is a 
rational function R2(x) satisfying 

R2(x) = 1 + 3x2 + o(x3) 

as x -+ 0. But the factor in (69) for s = 2 is also 1 + 3X2 + O(x3) and so we write 

k2 = f(2) II R3(X) 

with a new rational function 

R3(x) = 1 + 9x3 + O(x4). 

Iterating, we next obtain 
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k2 = - f(2)[f(3)]3 T R4(x) in e2 

with 

R4(x) = 1 + 18X4 + o(x5), 

etc. 
Since t(s), t3(s) and L4(s) have well known values for s = 2, 3, * * *, [8] it is clear 

that we can obtain a sequence that converges to k2 with arbitrary rapidity provided 
we can compute pK(S) for s = 2, 3, ... . We need not continue this point since a 
complete (and more elegant) treatment is given in [12]. 

7. The Twin Constants. Let us evaluate (more briefly) the constants (18). The 
Bateman-Horn formula [1] gives, for a = 42 and i3, 

(70) 1 1 2 
12 

3 ~ q(q -2)~ p(p-w(p)) (70) ~9 "a = 9 (2 - ) (3 - )t (q1 _ 1)2 II(P _ 1)2 

where w(p) is the number of solutions of 

(71) [(n - 1) + a][(n + 1)3 + a] 0 (modp) 

forp = 6m + 1. We need 

(72) T = * q(q- 2)/(q - 1)2 

and could compute it as in Section 2 using the lemma there with n 2. However, T 
may be expressed in terms of known constants. The twin-prime constant [15]: 

c2 = II r(r-2)/(r - 1)2, 
odd primes 

the Hardy-Littlewood constant [16]: 

h3 = P X2 q 
p- q-l 

and the Landau constant [7]: 
- 5 ~~~~~~~1/2 

b3 L2 I q2/(q2_ 1)] 

may be combined into 

(73) T 2c~b3 
7rh3 

(In its universality, (73) reminds us a bit of Euler's useful et' =-1 and Eddington's 
unfortunate hc/27re2 = 137.) 

If, for 1 < n < N, B3(N) is the number of n = a2 + 3b2, Z(N) is the number of 
(usual) twin-prime pairs, and P3(N) is the number of primes n2+3, then, by two 
conjectures and two theorems, we have 

(73a) T = Lim 21 Z(N) [B3(N) 2 (73a) T = 
L~~~~2 PiNnLi(N 



280 DANIEL SHANKS AND MOHAN LAL 

But we prefer to obtain 

(74) T = 0.153075970785714 

from the known values 

C2= 0.6601618158468696, 

h3 = 1.1207327535492914, 

b3 = 0.6389094054453439. 

Now we examine the last product in (70). If a2m # 1 (mod p), w(p) = 0, whereas 
if a2m 1 (mod p) usually w(p) = 6. But note that if a = 2, p = 43, (71) has only 
five solutions: 

n 3 8, 10, 12, 22, 24 (mod 43). 

And for a = 3, there are only five solutions for p = 307: 

n 78, 80, 112, 114, 116 (mod 307). 

This degeneracy comes about if two solutions m of m3 + a = 0 (mod p) differ by 
2 (mod p). Let us write 

(75) = fi (P* -w(p*))/(p* - 6) (a = +2, +3) 

for all such exceptional primes p*. For other a [6], (70) may have other exceptional 
factors since some q and/or some p may divide a. We could then absorb these excep- 
tional rational factors into O. just as we did in the r. of (19). We return to (75) below. 

We write the last product in (70) as 

Oa(ka)2u(a, co) 

with 

(76) u(a, co)= I p(p -6)/(p 3)2. 
almln1 (modv) 

Then 

(77) it, = T(k.)20,,u(a, co). 

We compute (76) as we did U(a, co). With 

(78) l0 flp(pi-6)/(p 3)2 
all P 

we have bounding sequences 

l(a, i)= 10 Il (p -3)2/p(p - 6), 
(79) a"m1i (modP);PSPi 

u(a, i)= II p(p- 6)/(p - 3)2. 
am1- (modp);P9Pi 

We obtained 

(78a) 10 = 0.368209383803918 

from the lemma with n = 6 and 3, and evaluated the bounds (79) and their weighted 



THE DISTRIBUTION OF CUBIC RESIDUES 281 

mean from our IBM data, as before. That gives 

1(2, 10000) = 0.9799883425, u(2, 10000) = 0.9799898160, 

1(3, 10000) = 0.9909293369, u(3, 10000) = 0.9909308268. 

Then 

(80) u(2, c)= 0.97998932(4), 

u(3, c)= 0.99093033(0) 

are obtained by the weighted mean, or, more simply (and nearly equal), by 

(81) u(a, co) ~ u(a, i)/R(i). 

Thus, l(a, i) and 10 are really redundant. 
There remains Oa. We have the 
THEOREM. If a prime p has a as a cubic residue, and if two cube-roots of a (mod p) 

differ by A, with p Il A, then 

(82) p IA + 27a'. 

Proof. Let 

A = (n + A)3-a, B= n3 -a. 

Then 

(A4 - 3nA3 + 6n2A2 + 9an - 9aA)A 

-(10A4 + 15nA3 + 6n2A2 + 9an + 18aA)B = A(A' + 27a2). 

Thus, if A B 0 0 (mod p) we obtain (82). 
(The proof is efficient but brutal. A more charming proof is given in the Appendix.) 
Now for A = 2, a = ?2, p 1172 and can only be 43. For A = 2, a = 13, pl 307 

and can only be 307. Therefore, 

(83) 
0+2- 38 0k3= 302 37 ~ O 301j~ 

and so, from (74), (80), and (77) we obtain (18). 
We have not previously stated that 

(84) k2 = k 2=k4 = k-4, 

k3 = k- 3 = kg = k-9, 

but of course that follows from (12). Not so with the tia and tea. We have 

26 2246 (85) 0*44 -25' ? = 2245 

and so T44(N) should be a little larger than T 2(N) while T: 9(N) should be a bit 
smaller than T43(N). 

8. Comparison with Horn's Data. In Table 3 we list values of Ta(N) for 
N = 2000(2000)14000 and a = :2. F3. These counts were obtained from Horn's 
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TABLE 3 

10-3N T.2(N) T2(N) Theory T-3(N) T3(N) Theory 

2 15 14 3.9 17 23 15.7 
4 26 25 2.1 24 38 25.0 
6 36 34 29.2 32 49 33.1 
8 43 36 35.9 40 58 40.6 

10 46 46 42.1 43 66 47.7 
12 52 56 48.2 52 71 54.5 
14 58 60 53.9 54 82 61.1 

lists of primes up to 14000 (2] that he kindly made available to us. We also give the 
right side of (17) with the t. taken from (18). 

Considering the small counts Ta(N) and limits N here, we would not expect 
better agreement than that recorded for a = =F 2 and a = -3. These are acceptable. 
But T3(N) is surprisingly, consistently and disturbingly large. In view of the usual 
good standing of conjectures of this type, one is inclined to surmise that this is merely 
a (rather large) fluctuation which will dissipate as N increases. But that could well be 
wishful thinking rather than scientific and we felt obliged to investigate this dis- 
crepancy. 

9. Our Own Data. We wish to check the counts T8(N) listed above, and, if 
they prove accurate, to extend the data to larger values of N. Since the T3(N) in 
Table 3 are too large in comparison with the theory, we can greatly abbreviate the 
computation, as we shall see. 

We determined all n such that 

(86) mI = (n- 1)3 + 3, n2 = (n + 1) + 3 

both satisfy Euler's Criterion: 

(87) 2(m-1)/2 I (mod m), 

and also, for n > 3, satisfy 

(88) m 0 0 (mod 2, 3, 5, 11, 17, 23, 61, 67, 73). 

The number of such n in 1 ? n + 1 < N we call T*(N). This T?(N) is much faster 
to compute than T3(N). 

The two values: n = 1, (ml = 3, m2 = I 1) and n = 3, (m = 11, m2 = 67) do not 
satisfy (88)-that is why we stipulated n > 3 for that condition. But all other prime- 
pairs (86) satisfy both (87) and (88) and so 

(89) T*(N) 2~ T3(N). 

Since almost all m satisfying 

2m1 I (mod m) 
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are prime, [17], and since we have added strong further conditions in (87) and (88), 
we can expect that T*(N) - T3(N) will be relatively very small, or even zero. 

We find, in fact, that 

T*(l4000) = T3(14000) = 82, 

and precisely the same 82 values of n are contained in each list. This shows that 
Horn's data is sound and that the phenomenon (of large T3(N)) is a real one. We 
therefore extended T*(N) to N = 50000 and obtained 

TABLE 4 

10-3N TU(N) Theory 103N T*3(N) Theory 

16 92 67.5 30 127 108.5 
18 97 73.7 40 146 135.4 
20 100 79.7 50 166 161.0 

The increment T*(50000) - T*(20000) 66 is less than the theoretical 161.0 - 
79.7 = 81.3 and the previous excess is now essentially liquidated. But, by (89), 
T3(50000) can only be smaller than T*(50000) = 166, if it differs at all. Therefore, 
the surmise was correct and we now have no reason to believe that (17) is false for 
a = 3. 

10. Appendix. Derivation of (5 1). We have 

R(i) = R (1_ 3(pn+ 1) ) 

and so 

log R(i) E 2 + ) 
n-i+1 Po p 

We write 
I, 

log R(i) 3 dn/p., 
i+ 

and from the Prime Number Theorem: 

2n p,,/(log p* - 1) 

we obtain 

log R(i) 3 f dp.(log p. - 2) 
log R~i) Ji+1 P's(log P~ 1)2 

Let 

x = log P,, - 1, X0 = logP;+ - 1. 

Then 
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log R(i) 
3 

f e I(x - 1 dx. 

The integral, call it I, may be evaluated by Exponential Integrals which in turn, 
have known continued fractions: 

I= El(xo) -- E2(xo) 
Xo 

_0 + 
1 2 xOc 2 1 3 

Xo1 + X1 + I ? + I + xO + I + 

Or, 
ego-X0 CX 

(x0 l)-I (x0 + l -3 + * 
(XO + 

(XO,+ 1) 

x0 + (x I (x + 1 xO + 2 

Thus, 

3 
log R(i) -2pi+1[log Pi+, + 1] 

which leads to (51). 
Geometric Interpretation of (82). Consider two equilateral triangles, of side S. 

displaced with respect to each other a distance D. See Fig. 1. 

"mo _tf _tm _ ____A S %%~~~B 

FiGuRE 1 

The fifteen lines joining the six vertices comprise: 6 of length S, 3 of length D, and 2 
each of length A, B, and C. 

We have 

A2= () + (D + 2S 

B2 = S2 + D2, 

2= (2 + (D -A2 S) 

Then 

A2C2 = (S2 + D2 + SDV/3)XS2 + D2- SD '3) 
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and so 
A2B2C2 = S6 + D. 

The product P of all 15 lines is 

(90) P = S6D3(S6 + D8). 

Now consider the congruence 

f(z)= [(z + A)3 -a][z3 - a]- 0 (mod p). 

It will have a double root only if p divides the discriminant. This equals the product 
of the squares of the 15 differences among the 6 roots of f(z) = 0. The 6 roots are 
disposed in the complex plane as in Fig. 1 if 

(91) S = V/3 a1/3, D A. 
Then (90) becomes 

P = 27a 2A8(A + 27a 2), 

and if p divides neither a nor A it must divide Ad + 27a2. 
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